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Elastic and inelastic cross sections for a two-channel model problem, in which dipole 
coupling is assumed, are calculated in the Harris-Nesbet method and compared with 
direct solutions of the Schroedinger equation. Two different coupling potentials are 
considered, one of which permits exact solution in terms of known functions, while the 
other requires a numerical solution. Results accurate to 1 ‘A are obtained for a non- 
degenerate case when a minimum representation for the wavefunction is taken as a 
combination of Slater orbitals and spherical Bessel and Neumann functions. For a 
degenerate case, it is found to be necessary to use sinusoidal energy-dependent terms 
in addition to Slater orbitals for a description of the internal part of the wave function 
and that, for the external part, only the leading asymptotic term of the spherical Bessel 
and Neumann functions need be retained. 

I. INTRODUCTION 

Cross sections for a two-channel model problem, in which the off-diagonal 
potential is taken to be a dipole, are calculated by the Harris-Nesbet variational 
method and compared with those obtained by solving the differential equations. 

Harris [l] has proposed an algebraic expansion technique for the solution of the 
differential equation which arises for elastic scattering processes. The method was 
restricted in that the phase shifts could be calculated only at certain energies-the 
Harris eigenvalues of the problem. However, this restriction has been removed by 
Nesbet [2), who extended the Harris technique so that phase shifts would be 
calculated at arbitrary energies. Nesbet [3] further developed a formalism which 
included inelastic processes-referred to here as the Harris-Nesbet method-and 
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successfully applied it to a two-channel model problem in which the off-diagonal 
coupling between the two channels is taken to be a constant step potential. An 
attractive feature of the Harris-Nesbet method is that it is essentially algebraic in 
nature. 

Seiler [4] has applied the Harris-Nesbet method to the scattering of positrons 
and electrons from atomic hydrogen in the ls-2s-2p close-coupling approximation. 
His results agree well with calculations [5-71 in which the closely coupled equations 
are solved numerically for energies E < 0.75 Ry, where only elastic scattering is 
energetically possible. However, for E > 0.75 Ry., where the Is, 2s, and 2p 
hydrogenic states are energetically accessible, he was unable to obtain satisfactory 
results when only Slater basis functions and spherical Bessel and Neumann 
functions were used in the expansion of the wave functions. The source of the 
difficulty is the coupling of the degenerate 2s and 2p states of atomic hydrogen, 
which gives rise to a long-range off-diagonal dipole. Seiler, Oberoi and Callaway 
[8] added energy-dependent sinusoidal terms to the basis set employed by Seiler 
[4] and used this set to obtain S-wave partial cross sections for scattering of 
electrons by atomic hydrogen in the three-state approximation for E > 0.75 Ry. 
Their results agree to within 1.0 % with numerical calculations of Burke et al. [7]. 

We investigate two-channel model problems, both degenerate and nondegenerate, 
each having an off-diagonal dipole potential. The models are discussed in Section II 
together with the relevant equations of the Harris-Nesbet method. Further, the 
asymptotic equations for the degenerate model problem are solved analytically 
in Section IIA where it is found to be necessary to include, in the expansion of the 
wave functions, other terms in addition to those retained by Seiler [4]. In Section III 
we discuss alternative methods of including these additional terms in the degenerate 
dipole coupling case, and further we show that such terms are not required in the 
nondegenerate case. 

II. THE HARRIS-NESBET METHOD FOR A DIPOLE COUPLING POTENTIAL 

The radial equation for an N-channel system may be written 

where i and j range over the open channels, Hij are the matrix elements of the 
Hamiltonian operator, and E is the total energy of the system. The Harris-Nesbet 
method assumes that the radial function for channel j, when the system is initially 
in channel v, may be given by 
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where Qiy(r) represents the internal part of the wavefunction which may be expan- 
ded in normalized functions. 

Further, the functions Sj and Cj of Eq. (2) are required to satisfy the boundary 
conditions 

$(r) ,ym sin(k,r - 142), 

Cj(r) ,ym cos(ky - lp/2). (3) 

An appropriate variational formalism is then applied to find the arbitrary 
parameters. Details of the method are contained in Nesbet [3]. For example, on 
applying the Kohn variational method, elements of the reactance R-matrix can be 
related to the a-coefficients by 

a;j = 6,j ; c& = (ky/kj)1’2 Rvi . (4) 

Partial cross sections for a transition v -+ j are related to the R-matrix elements 
through 

Qvi = 4~ IPW - iR)lvj 12/k (5) 

We are required to choose functions @/, Sj , and Cj such that the interaction 
region is adequately spanned. Let us examine two-channel model problems which 
have an off-diagonal dipole potential, since this includes the dominant long-range 
feature which is inherent, for example, in low-energy electron-hydrogen scattering. 
We have studied two such models, each having the same diagonal elements. The 
Hamiltonian operator is (in Rydberg units) 

H,, = - [d2/dr2 - 11(11 + l)/r2], 
H22 = - [d2/dr2 - 12(12 + l)/r2] + AE. 

The off-diagonal elements are 

Case I. 

Case II 

H12 = H,, = b/r2 

H,, = H,, = 0 
@ > r3, 

(r < rd. 
(64 

H,, = H,, = b(1 - e-r)3/r2, (6b) 

where I, and kj are the orbital angular momentum and wavenumber of the scattered 
particle in channel j, respectively; b is the coupling parameter; and LIE is the energy 
separation of the channels given by 

AE = (k12 - k22). (7) 
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The solution for the wavefunction in Case 1 can be expressed in terms of known 
functions (if&Z = 0). The elements of the R matrix are determined by matching 
functions and derivatives at the potential discontinuity r = r,, . Numerical integra- 
tion must be employed in Case II. 

IIA: DEGENERATE ASYMPTOTIC SOLUTIONS 

We consider the solution of the asymptotic equations in the degenerate case, in 
which both channels have the same energy k2. The coupled differential equations 
for large r are 

+ k2) 6,j - 91 +jv(r) = 0; i,j= 1,2 

where the matrix M is given by 

A general solution of Eq. (8) is [9] 

(9) 

(10) 

where A is a real, orthogonal matrix which diagonalizes M so that 

(l&In + 1) 6,, = c A;:MijAi, . (11) 
ij 

The functions @iv can be written in terms of the Bessel functions of order -‘I,, + fr 
and -A, - i. 

Consider the case when Ii = 0 and I2 = 1 so that the M and A matrices can be 
written as 

M=(; ;); A = t”,, “,,, 
where X1,, = l&&j37 
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In order to use the Harris-Nesbet method we are required to construct solutions 
which have the asymptotic form (from Eqs. (2) and (4)): 

*Ax> ,r”, k-1/2[sin(x - &n/2) 6,” + cos(x - Zj~/2) R,,] (12) 

For Eqs. (8), we may choose to write solutions in the form [with QiV = 0] 

#j”(x) = k-“‘[&(x) &, + Ci(x) Rj,] j = 1,2. (13) 

Equating (10) and (13) we obtain 

S,(x) = sin x + A(aR,,) sin x + B(ol det R) cos x, 

C,(x) = cos x - B(a) sin x + A(-CXR,,) cos x, 
(14) 

S,(x) = -cos x + x-l sin x + C(cy. det R) sin x - A(-aR,,) cos x, 

C,(x) = sin x + x-l cos x + A(aR1,) sin x + C(a) cos x, 

where 

det R = RllR,, - R,,R,, , 

A(P) = - & - & + g - . ..) 

B(P) = - & + (6 + B> & - ..-, 

c(p)=&+(4-p)-& **.. 

(1% 

We note that each term of the functions A, B, and C depends on the coupling 
strength b. When there is no coupling between the channels, the expansions for the 
asymptotic terms, Eq. (14), reduce to spherical Bessel and Neumann functions. 
However, when coupling is present in this degenerate case, terms of order 0(x-l) 
are introduced, which are of the same order as those included in the zero-coupling 
case, and solutions of the asymptotic Eqs. (8) are no longer pure spherical Bessel 
and Neumann functions. Thus, in the degenerate dipole case, in order to span 
properly the interaction region, at least the first term in the functions A, B, and C 
must be included in expansions (2). 
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III. COMPUTATIONAL PROCEDURES 

A. Exact Solution 

Case I 

Solution for this potential [see Eq. (6a)] can be expressed in terms of Bessel 
functions provided AE = 0. We consider specifically b = -6, I, = 0 and I, = 1, 
which corresponds to a typical value for atomic hydrogen. For r < r, two linearly 
independent solutions of (8) which are regular at the origin are 

A1 = Pr j,tkr), 
Y4” = 0, 

&’ = 0 
*2” = Qrjl(kr) 

(16) 

For r > r. , the solutions can be expressed in terms of functionf<(r) = #J+,&), 
in which 

p1 = [$ + v3p/2, p2 = i[&7 - $]112, (17) 

and J,,(k,) is a Bessel function [9]. The components of the total wavefunction are 
expressed in a form similar to (10): 

in which 

Xl” = C&f u: t C,;f, , 
(19) 

X2 v = C&f u: i- C&f l2 . 

The asymptotic form of the functions f, is 

f, - (-g2 cos [kr - ($- + ;, ?7]. (20) 

The constants C,* above can be related to the as yet unknown elements of the R 
matrix by requiring that Eqs. (12) and (19) must be equivalent asymptotically. 
Analytic expressions for the R matrix are finally obtained by matching the interior 
and exterior solutions (functions and derivatives) at r = r. . Since the resulting 
expressions for the R matrix elements are quite complicated, we will not reproduce 
them here. 

Case II 

In this case, since analytic solutions are not known, it is necessary to solve Eq. (1) 
numerically. Further, the unphysical discontinuity in the elements of the Hamil- 
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tonian of Case I is not present. We solve (1) for both a degenerate and a non- 
degenerate two channel problem, using the same values of the parameters b, Z, , I, 
as in Case I above. Numerical solutions are obtained by integrating the equations 
outwards and inwards by Numerov’s method, with subsequent matching to obtain 
a final continuous solution. The asymptotic expansion method of Burke and Schey 
[5] is used to determine the R-matrix from the function &‘(r). A combination of 
these methods has been outlined by Smith et al. [lo]. The R-matrices and cross 
sections are found to be independent of the integration parameters to at least 4 
significant figures. The numerical solutions are used as a standard against which 
results from the Harris-Nesbet method for various choices of functions @, S, and 
C are judged. 

B. The Harris-Nesbet Method 

We will now describe the companion calculation by the Harris-Nesbet method. 
We choose the internal part of wave function (2) to be represented by Slater 

orbitals: 

(21) 

with 

rlia(r) = Nj,rz~+le-~~.T , (2% 

where the civ,a are variationally determined parameters, Nja are normalization 
constants for the Slater orbitals, and the exponents &:5a are selected to span ade- 
quately the short-range portion of the interaction region. These exponents are 
chosen such that the maxima of the Slater terms occur at various spatial positions 
in the interaction region. The maximum of a Slater orbital occurs at 
r,w = (Zj + 1)/l& . H ence, by choosing a set of r values in the interaction region, a 
set of corresponding cio coefficients is simply obtained. However, if the set of r 
values is too dense, numerical difficulties will occur in solving the required eigen- 
value equation, since some of the functions become linearly dependent. 

In those problems involving degenerate channels, we may supplement the basis 
function described above by normalized functions of the form 

rljy)(r) = Nj, (1 - e;r)zj+m+2 sin kjr 
I 

s = 1, 
cos kjr s = 2, Wb) 

where Nj, are normalization constants and the exponent m takes on values 1 or 2. 
This choice is made since Eq. (14) indicates that terms of the form (22b) are 
important in the exact solutions of Eqs. (8). 
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We choose spherical Bessel and Neumann functions to represent the S, and Cj 
functions. To ensure that they behave properly for small values of r, we multiply 
by cut-off factors of the form (1 - e-BT)n. Parameter it is chosen so that the func- 
tions decrease at least as fast as r zj+l for small r. Values of the cross sections are 
insensitive to /3 for p N 1, 

To determine if the above minimum choices for Djy, Sj , and Cj are sufficient to 
guarantee calculated cross sections accurate to 1 % in the Harris-Nesbet method, 
we now consider first a nondegenerate case and then a degenerate case. 

I. Non-Degenerate Situation. For this case we choose, in Eq. (6), AE = 0.75 Ry. 
which is the splitting of the )z = 1 and n = 2 levels in atomic hydrogen. Only the 
“smooth” Hamiltonian of Case II is considered. We cannot decouple the equations 
in the manner employed for the asymptotic Eqs. (8), but examination of an asymp- 
totic expansion of the solutions shows that the lowest order correction terms due 
to a nondegenerate dipole coupling potential, are 0(x-2). Thus, we may expect 
that pure spherical Bessel and Neumann functions together with Slater orbitals 
may be sufficient for the case II = 0 and Z, = 1. 

As noted by Harris and Michels [l l] for a two-channel Huck problem more 
rapid convergence is achieved for the cross sections than for the individual elements 
of the R-matrix. We find this to be true for our model problems also and thus we 
will give values of the partial cross sections rather than the individual R-matrix 
elements. 

Table I gives partial cross sections for an energy E = 1.0 Ry. Column A lists 

TABLE I 

Partial-wave cross sections Q,, for a nondegenerate Case II with 
E = 1.0 Ry, dE = 0.75 Ry, I1 = 0, E, = 1, and b = -6O 

A B C 

7.445 7.390 7.391 
0.1780 0.1786 0.1779 

Q22 14.53 14.52 14.47 

a Column G: numerical; Column B: Kohn variational method; Column C: Rubinow varia- 
tional method. 

the values obtained from a numerical solution. Results obtained in the Harris- 
Nesbet method with the Kohn and Rubinow variational methods are given in 
Columns B and C. Twenty Slater orbitals are included in the internal function @/ 
for each channel, and spherical Bessel and Neumann functions are used for the 
Sj and Cj functions. Nesbet [3] has suggested a criterion, related to a ratio of certain 
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matrix elements, for choosing which variational method is superior for a given 
energy. For Table I this criterion suggests that the Rubinow method (Column C) 
gives superior results to those calculated by the Kohn method. We note that with 
either method the agreement with numerical calculations is within 0.8 % and that 
the variational results agree to within 0.4 %. This holds true for the range of 
energies 0.8 < E < 2.0 Ry. investigated, with AE = 0.75 Ry. 

2. Degenerate Situation. For this case we have AE = 0 in Eq. (6). In Section 
IIA we find that pure spherical Bessel and Neumann functions are not the correct 
solutions to the asymptotic equations, so we expect that the minimum choices for 
Qiy, Sj , and Cj will not be sufficient for this degenerate case. 

Case I 

Partial cross sections for the sharply cutoff potential of Case I are given in 
Table II. The exact results (A) are compared with those obtained from the Kohn 
(B) and Rubinow (C) procedures for two different values of the wave vector k. The 
basis set included 13 Slater orbitals and six trigonometric functions in each channel. 

TABLE II 

Partial cross sections Q, for the degenerate problem. Case I: sharply cutoff potentiaP 

k = 0.3 
A B C 

18.717 18.710 18.710 
8.489 8.547 8.547 

15.198 15.105 15.105 

k = 0.9 
A B C 

0.141 1.101 0.147 1.116 0.147 1.115 

3.644 3.622 3.623 

LI The fixed parameters are I1 = 0, I, = 1, b = -6, r0 = 1. Columns as in Table 1. 

The variational calculation for this potential has certain special features. For 
r < r0 , the wave functions in the interior region are pure spherical functions, and 
the Slater orbitals are actually not needed. The discontinuous nature of the coupling 
term produces a discontinuous second derivative of the wavefunction. For this 
reason, the convergence of the variational results is not rapid. However, it is seen 
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that results of acceptable quality, i.e., discrepancies of only a few percent between 
exact and variational results are obtained. All integrals appearing in the variational 
calculation are calculated analytically. 

Case ZZ 

Here we have a smooth coupling potential. We have investigated two methods 
by which additional terms may be incorporated in an expansion of wave functions 
$4”’ 

We choose fifteen Slater orbitals to represent the internal functions QiV for each 
channel, and augment our minimum representation for Sj and Cj functions by 
choosing them to be given by Eq. (14). Since these terms depend explicitly on the 
R-matrix which we are trying to calculate, we obtain initial estimates for Rij by 
using spherical Bessel and Neumann functions for Sj and Cj , respectively. With 
this estimate, we iterate Eq. (14) until convergence of the partial cross sections is 
obtained. 

Table III gives partial cross sections for an energy E = 0.25 Ry. Column A 

TABLE III 

Partial-wave cross sections Q, for degenerate Case II with 
E = 0.25 Ry, 1, = 0, I, = 1, and b = -6” 

A B C D E F G 

Qll 3.653 10.700 3.165 3.665 3.650 3.650 3.652 
3.260 5.451 3.717 3.650 3.650 3.652 

QlZ :; 0.0094 0.0021 0.0117 0.0094 0.0094 0.0094 0.0095 
0.0010 0.0070 0.0092 0.0094 0.0094 0.0095 

Qzz (4 45.515 46.032 45.482 45.538 45.536 45.537 45.516 
@I 40.349 45.526 45.538 45.536 45.537 45.516 

n See text for a description of rows and columns. 

lists the values obtained from a numerical solution while Columns B-F give 
results obtained in the Harris-Nesbet method, when terms up to 0(x-l) are 
included in the functions Sj and Cj . Inclusion of only spherical Bessel and 
Neumann functions in Eq. (14) leads to the cross sections given in Column B, 
which are in poor agreement with those given in Column A. Successive iterations 
are listed in Columns C, D, and E. The values in Column F are a result of the use 
of the numerical R-matrix elements in Eq. (14). An examination of Columns E and 
F shows that when one term is taken in functions A, B, and C of Eq. (15), itera- 
tions on the R-matrix elements have converged satisfactorily. Finally, Column G 
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is obtained when we include terms up to O(.+) in Eqs. (14) and (15) and the 
numerical R-matrix elements are used in computing the functions A, B, and C of 
Eq. (15). Thus we conclude that only the first term need be retained for this case 
of l1 = 0 and l2 = 1. This holds true for the range of energies 0.01 < E < 1.0 Ry 
investigated. 

The partial cross sections referred to in rows (a) of Table 111 are calculated 
using the Kohn variational method and those in rows (b), the Rubinow. According 
to the Nesbet criterion [3], cross sections in rows (a) are superior to those in rows 
(b). However, we find that the two methods predict the same results for the degene- 
rate cases studied. 

An alternative method for incorporating additional terms in an expansion of 
$/ is to use spherical Bessel and Neumann functions for Sj and Ci and to augment 
our minimum representation for the internal function Qi”. To the basis set which 
previously consisted of Slater orbitals we add sinusoidal energy-dependent func- 
tions presented in Eq. (22b). These basis functions should provide the corrections 
which are included through use of functions A, B, and C of Eq. (15) in the first 
method. The advantage of the second method is that functions (22b) will be 
weighted by variationally derived parameters and we do not need to iterate our 
solution with respect to the R-matrix elements. A disadvantage, however, is that 
these additional basis functions are energy dependent and so an eigenvalue equa- 
tion [(55) of Ref. 31 has to be solved for every energy, whereas when only Slater 
orbitals are included in aj” it need only be solved once. 

Table IV gives partial cross sections for an energy E = 0.25 Ry. in the degenerate 
case with l, = 0, I, = 1, and b = -6. Column A lists the values obtained from a 
numerical solution, while Columns B-D give results obtained in the Harris- 
Nesbet method. In Columns B and C spherical Bessel and Neumann functions, 

TABLE IV 

Partial-wave cross sections Q, for degenerate Case II with 
E = 0.25 Ry, I1 = 0, 1, = 1, and b = -6” 

A B C D 

Q,, g; 3.653 3.646 3.676 3.676 
3.642 3.649 3.649 

QlZ ;; 0.0094 0.0101 0.0095 0.0095 
0.0073 0.0094 0.0094 

Q*2 2 45.515 45.499 45.497 45.488 
45.540 45.513 45.513 

a See text for a description of rows and columns. 

581/10/1-5 
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which are cut-off so that they have the correct behavior for small r, are used for the 
Sj and Cj functions. Fourteen Slater orbitals are included in the internal functions 
Qjv for each channel together with sinusoidal functions (22b) with m = 1 and 
m = 1 and 2, respectively, for Columns B and C. The only difference in the choice 
of functions for Columns C and D is that, for Column D, we use the leading term 
for the Sj and Cj functions whereas, for Column C, we employ spherical Bessel and 
Neumann functions. The Nesbet criterion suggests that results in row (b) are 
superior to those in row (a). 

For this degenerate case we obtain results accurate to 0.8 % when we augment 
@/ by incorporating energy-dependent sinusoidal terms (22b) of one order greater 
than the appropriate spherical Bessel and Neumann functions. Further, we find 
that we need only retain the leading asymptotic term in the Sj and Cj functions. 

We conclude that, in problems which contain a dipole coupling potential, a 
minimum expansion for wave functions, in terms of Slater orbitals and spherical 
Bessel and Neumann functions, is sufficient when the energies of the channels are 
unequal but it is is insufficient when they are equal. In the latter (degenerate) case, 
a method which can easily be extended to multichannel problems with arbitrary 
angular momenta is to include sinusoidal energy-dependent terms of type (22b) in 
addition to Slater orbitals for a description of the internal wave function and, for 
the external part of #jy, to retain only the leading asymptotic term in the Sj and Cj 
functions. 
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